TIPOS DE PROPOSICIONES
Proposiciones Simples
Son aquellas que no tienen oraciones componentes afectadas por negaciones ("no") o términos de enlace como conjunciones ("y"), disyunciones ("o") o implicaciones ("si . . . entonces"). Pueden aparecer términos de enlace en el sujeto o en el predicado, pero no entre oraciones.
Son aquellas que no tienen oraciones componentes afectadas por negaciones ("no") o términos de enlace como conjunciones ("y"), disyunciones ("o") o implicaciones ("si . . . entonces"). Pueden aparecer términos de enlace en el sujeto o en el predicado, pero no entre oraciones.
Proposiciones Compuestas
Una proposición será compuesta si no es simple. Es decir, si está afectada por negaciones o términos de enlace entre oraciones componentes.
Una proposición será compuesta si no es simple. Es decir, si está afectada por negaciones o términos de enlace entre oraciones componentes.
EJEMPLOS:
1)
Carlos Fuentes es un
escritor.
(Simple)
2) Sen(x) no es un número mayor que 1. (Compuesta)
3) El 14 y el 7 son factores del 42. (Simple)
4) El 14 es factor del 42 y el 7 también es factor del 42. (Compuesta)
5) El 2 o el 3 son divisores de 48. (Simple)
6) El 2 es divisor de 48 o el 3 es divisor de 48. (Compuesta)
7) Si x es número primo, entonces x impar. (Compuesta)
8) Si x > 10, entonces 2x - 3 > 16. (Compuesta)
9) No todos los números primos son impares. (Compuesta)
2) Sen(x) no es un número mayor que 1. (Compuesta)
3) El 14 y el 7 son factores del 42. (Simple)
4) El 14 es factor del 42 y el 7 también es factor del 42. (Compuesta)
5) El 2 o el 3 son divisores de 48. (Simple)
6) El 2 es divisor de 48 o el 3 es divisor de 48. (Compuesta)
7) Si x es número primo, entonces x impar. (Compuesta)
8) Si x > 10, entonces 2x - 3 > 16. (Compuesta)
9) No todos los números primos son impares. (Compuesta)
Algunas
aclaraciones
a) No obstante que los ejemplos 3) y 4) gramaticalmente significan lo mismo, operativamente se consideran distintos. Similarmente 5) y 6).
b) A veces proposiciones como la 8), aparecen escritas de la forma: 2x - 3 > 16, si x > 10.Fchgdfa<d
a) No obstante que los ejemplos 3) y 4) gramaticalmente significan lo mismo, operativamente se consideran distintos. Similarmente 5) y 6).
b) A veces proposiciones como la 8), aparecen escritas de la forma: 2x - 3 > 16, si x > 10.Fchgdfa<d
No hay comentarios.:
Publicar un comentario