viernes, 7 de julio de 2017

FUNCIONES

Las funciones juegan un papel muy importante en matemática. Una precisa definición es la siguiente.

Sea f una relación de A en B. Entonces f es una función de A en B (denotado f : A → B y se lee “f es una función de A en B”) si y sólo si

a) Dom(f) = A

b) ∀ x ∈ A, ∀ y, z ∈ B [(x, y) ∈ f ∧ (x, z) ∈ f] → y = z.


En palabras, lo anterior dice que si f es una relación de A en B tal que para cada x ∈ A existe exactamente un y ∈ B tal que (x, y) ∈ f, entonces f es una función


La condición a) garantiza que para cada x ∈ A existe al menos un tal “y” y la condición b) garantiza que hay a lo más uno. Asá, tomados juntos, hay exactamente uno. 

En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”.
Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.
A modo de ejemplo, ¿cuál sería la regla que relaciona los números de la derecha con los de la izquierda en la siguiente lista?:
1 -------->   1
2 -------->   4
3 -------->   9
4 --------> 16
Los números de la derecha son los cuadrados de los de la izquierda.
La regla es entonces "elevar al cuadrado":
1 -------->   1
2 -------->   4
3 -------->   9
4 --------> 16
x -------->   x .
Para referirse a esta regla podemos usar un nombre, que por lo general es  la letra (de función). Entonces, es la regla "elevar al cuadrado el número".
Usualmente se emplean dos notaciones:
x --------> x f(x) = x .
Así, f(3) significa aplicar la regla f a 3. Al hacerlo resulta 3 = 9.
Entonces f(3) = 9. De igual modo f(2) = 4,  f(4) = 16,   f(a) = a , etc.
Ejemplo 1
Correspondencia entre las personas que trabajan en una oficina y su peso expresado en kilos
Conjunto X
Conjunto Y
Ángela
55
Pedro
88
Manuel
62
Adrián
88
Roberto
90
Cada persona (perteneciente al conjunto dominio ) constituye lo que se llama la entrada variable independiente . Cada peso (perteneciente al conjunto codominio ) constituye lo que se llama la salida variable dependiente . Notemos que una misma persona no puede tener dos pesos distintos. Notemos también que es posible que dos personas diferentes tengan el mismo peso.
Ejemplo 2
Correspondencia entre el conjunto de los números reales (variable independiente) y el mismo conjunto (variable dependiente), definida por la regla "doble del número más 3".
x -------> 2x + 3 o bien f(x) = 2x + 3
Algunos pares de números que se corresponden por medio de esta regla son:
Conjunto X
Conjunto Y
Desarrollo
− 2
− 1
f(−2)  = 2(−2) + 3 = −4 + 3 = − 1
− 1
1
f(−1)  = 2(−1) + 3 = −2 + 3 =    1
0
3
f(0)    = 2(0)   + 3 =   0 + 3 =    3
1
5
f(1)    = 2(1)   + 3 =   2 + 3 =    5
2
7
f(2)    = 2(2)   + 3 =   4 + 3 =    7
3
9
f(3)    = 2(3)   + 3 =   6 + 3 =    9
4
11
f(4)    = 2(4)   + 3 =   8 + 3 =  11

Con estos ejemplos vamos entendiendo la noción de función: como vemos, todos y cada uno de los elementos del primer conjunto (X) están asociados a uno, y sólo a uno, del segundo conjunto (Y)

No hay comentarios.:

Publicar un comentario